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Abstract

Densification is a critical step in the manufacture of near-net-shaped components via powder processing. A non-isostatic stress state
will in general result in shape distortion in addition to densification. In the quasi-isostatic pressing (QIP) process the green body is placed
into a granular pressure-transmitting medium (i.e. PTM), which is itself contained in a rigid die. Upon the application of a uniaxial load,
the PTM redistributes the tractions on the green body, thereby creating a stress state that is quasi-isostatic. The character of the defor-
mation of the PTM is studied using model experiments on pressing of the PTM in a rigid die and a scanning electron microscopy analysis
of the PTM powder. An important problem of the optimization of the PTM chemical composition enabling the maximum densification
of a porous specimen with the minimum possible shape distortion is solved. The results of modeling agree satisfactorily with the exper-
imental data on cold QIPing Ti and Ni powder samples and hot QIPing TiC–TiNi cermet composites.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Densification of porous materials by the application of
compressive stress is an important mechanical processing
method. Porous bodies undergo volume change in addition
to shape change during mechanical treatment; this intro-
duces additional considerations with regard to possible
deformation modes, in comparison to fully dense bodies.

Several methods are used to insure densification of por-
ous materials (for more details, see German [1]). The prin-
cipal ones are shown in Fig. 1. Stress states imposed by the
different methods depend on the loading mode.

In the terminology of mechanical treatment of porous
bodies, the volume change relative to the shape change cor-
responds to the ‘‘stiffness’’ of the deformation modes. Free
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up-setting has the lowest stiffness of the deformation modes
shown in Fig. 1. Isostatic pressing has the highest stiffness.
It is evident that the higher stiffness causes the larger den-
sification degree, which is of significant importance for
final mechanical properties. In this regard, isostatic press-
ing has the highest potential for the production of full-
dense articles. However, the high cost of equipment
associated with isostatic pressing (e.g. CIP and HIP) of
particulate and porous bodies lends impetus for other
cost-effective technologies, which are technically simple
while providing a sufficiently high degree of stiffness with
respect to the deformation mode.

Uniaxial pressing with a pressure-transmitting medium
(PTM) (Fig. 1) has been attracting attention as one such
possible alternative method. Known as the Ceracon [2–4]
or quasi-isostatic pressing (QIP) process, it has been
utilized industrially in manufacturing [1,5,6] and, in
particular, in combination with self-propagating high-
temperature synthesis (SHS) [7–20]. This technological
rights reserved.
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Fig. 1. Deformation schematics for different pressure densification processes.
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sequence was pioneered by Merzhanov and co-workers [21]
in Russia and implemented in the US by Raman et al. [2].
When combined with SHS, QIP offers a relatively simple
processing method by which hundreds of industrially
useful materials can be produced and shaped into engineer-
ing components [3]. A granular PTM (alumina or alumina
with graphite powder) serves not only as a load transmitter,
but also as a natural thermal insulator which prevents
substantial heat loss and minimizes temperature gradients
during SHS. This leads to increased flexibility in the
pressurization cycle, as well as microstructural uniformity
(grain size, phase distribution, etc.).

In contrast to a conventional containerless isostatic
pressing, a considerable shape change is obtained under
QIP [1,4].

In light of the development of near-net-shape technol-
ogies, the analysis of both shape and volume changes
under QIP is of considerable importance. The factors
which influence the shape and the volume change of a
porous body include the initial porosities of both the
PTM and the porous body, and their respective constitu-
tive properties. The objective of the present work is the
investigation of the effect of these factors on shape change
during QIP.

The paper is organized as follows: Section 2 provides a
description of a constitutive model for nonlinear-viscous
deformation of porous bodies. Section 3 comprises the the-
oretical analysis of the quasi-isostatic pressing. In this sec-
tion, the change in the aspect ratio for a cylindrical porous
body is analyzed for the conditions of free up-setting,
pressing in a rigid die, isostatic pressing and QIP. Section
4 includes the experimental data on the constitutive behav-
ior of PTM. Section 5 includes the solution of an important
problem of the optimization of the PTM chemical compo-
sition (the concentrations of graphite and alumina pow-
ders) enabling maximum densification with minimum
possible shape distortion. Section 6 presents the results of
cold QIP experiments on Ti and Ni porous bodies and
hot QIP experiments on TiC–TiNi cermet composites. A
comparison of experimental and theoretical results is given
in Section 7.

2. Theory of nonlinear-viscous deformation of porous bodies

The mechanical response of a nonlinear-viscous porous
body to an externally applied pressure (which is signifi-
cantly higher than the sintering-imposed stresses) can be
described [22–26] by a rheological (constitutive) relation-
ship of a continuum theory of sintering connecting compo-
nents of the stress tensor rij and the strain rate tensor _eij

and omitting the effective sintering stress:

rij ¼
rðW Þ

W
u_eij þ w� 1

3
u

� �
_edij

� �
ð1Þ

where W is the so-called equivalent strain rate, and r(W) is
the equivalent stress, u and w are the shear and bulk viscos-
ity moduli, which depend on porosity h, dij is a Kronecker
symbol (dij = 1 if i = j and dij = 0 if i 6¼ j) and _e is the first
invariant of the strain rate tensor, i.e. the sum of the tensor
diagonal components: _e ¼ _e11 þ _e22 þ _e33.

The porosity h is defined as 1� q
qT

, where q and qT rel-

ative and theoretical (corresponding to a fully dense state)
densities, respectively. Physically, _e represents the volume
change rate of a porous body.

Equivalent strain rate W is connected with the current
porosity and with the invariants of the strain rate tensor:

W ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1� h
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u _c2 þ w _e2

p
ð2Þ

(the origin of this equation is explained in Ref. [24]); _c is the
second invariant of the strain rate tensor deviator and rep-
resents, physically, the shape change rate of a porous body:



Fig. 2. Conditions of biaxial loading of a porous sample during QIP.
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_c ¼ _eij �
1

3
_edij

� �
_eij �

1

3
_edij

� �� �1
2

ð3Þ

Parameter r(W) determines the constitutive behavior of
a porous material. If r(W) is described by the linear
relationship r(W) = 2g0W, where g0 is the shear viscosity
of a fully dense material, one obtains the equation
corresponding to the behavior of a linear-viscous porous
body (used to describe hot deformation of amorphous
materials):

rij ¼ 2g0 u_eij þ w� 1

3
u

� �
_edij

� �
ð4Þ

If r(W) is a constant (r(W) = ry, ry being the yield
stress for a fully dense material), the equation correspond-
ing to a rigid-plastic porous body (used to describe cold
deformation processing) is obtained:

rij ¼
ry

ffiffiffiffiffiffiffiffiffiffiffi
1� h
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u _c2 þ w _e2

p u_eij þ w� 1

3
u

� �
_edij

� �
ð5Þ

In the general case, r(W) is described by a nonlinear
relationship. For example, for hot deformation of crystal-
line materials, a power law is used [1] (r(W) = AWm where
A and m are the material constants, 0 6 m 6 1). In this
case, we have:

rij ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u _c2 þ w _e2

p
ffiffiffiffiffiffiffiffiffiffiffi
1� h
p

 !m�1

u_eij þ w� 1

3
u

� �
_edij

� �
ð6Þ

It can be noted, that, for m = 1, Eq. (6) is transformed into
Eq. (4) (A = 2g0) and, for m = 0, Eq. (6) is transformed
into Eq. (5) (A = ry).

Thus, linear-viscous and rigid-plastic behaviors are two
limiting cases for a nonlinear-viscous constitutive behavior.

3. Analysis of the densification processes

Based on the theory of nonlinear-viscous deformation of
porous bodies described in the previous section, it is possi-
ble to assess both the densification kinetics and the shape
evolution of a specimen subjected to QIP.

It is assumed that the stresses are uniform within both
the PTM and the porous body. For simplicity, a cylindrical
geometry is assumed and a cylindrical coordinate system is
used.

The volume–change rate _e and the shape–change rate _c
are given by:

_e ¼ _ezz þ 2_err ¼ 1þ 2
_err

_ezz

� �� �
_ezz ¼

_h
1� h

ð7Þ

_c ¼
ffiffiffi
2

3

r
_ezz � _errj j ¼

ffiffiffi
2

3

r
1� _err

_ezz

� �����
���� _ezzj j ð8Þ

where _ezz, _err and h are the axial strain rate, radial strain
rate and porosity, respectively. For a cylindrical speci-
men, the axial and radial strain rates are given by (see
Fig. 2):
_ezz ¼
_H

H 0

; _err ¼
_R

R0

ð9Þ

where H and R are the instantaneous cylinder height and
radius. Substituting Eq. (3) into Eq. (8) gives the following
relationship for the shape–change rate:

_c ¼
ffiffiffi
2

3

r
_H

H
�

_R
R

����
���� ð10Þ

This expression will be used to derive relationships
between the height and the radius of the cylindrical speci-
men and the porosity.

The radial rrr and the axial rzz stresses can be written as
(see Eqs. (1) and (6)):

rrr ¼ AW m�1u
_err

_ezz

� �
� 1

3
1� 3

w
u

� �� �
1þ 2

_err

_ezz

� �� �� 	
_ezz

ð11Þ

rzz ¼ AW m�1u 1� 1

3
1� 3

w
u

� �� �
1þ 2

_err

_ezz

� �� �� 	
_ezz ð12Þ

where W is the equivalent strain rate, A and m (0 6 m 6 1)
are material constants, and u and w are the normalized
shear and bulk viscosity moduli (see Section 2). The shear
and bulk viscosity moduli depend upon porosity h and are
given by [22–26]:

u ¼ ð1� hÞ2 ð13Þ

w ¼ 2

3

1� hð Þ3

h
ð14Þ

From Eqs. (13) and (14), the ratio of the bulk to shear vis-
cosity moduli is obtained:
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w
u
¼ 2

3

1� h
h

� �
ð15Þ

The equivalent strain rate W is defined, by substituting
Eqs. (7), (8) and (13) into Eq. (2), as:

W ¼ u
1� h

_c2 þ w
u

� �
_e2

� �� 	1
2

¼ ð1� hÞ 2

3
1� _err

_ezz

� �� �2

þ w
u

� �
1þ 2

_err

_ezz

� �� �2
( )" #1

2

_ezzj j

ð16Þ
If the specimen’s volume is much smaller than the vol-

ume of the PTM-containing rigid die, then the specimen’s
deformation is accompanied by a negligible deformation
of the PTM material. Hence, the granular flow of PTM is
minimal and it can be assumed that the PTM (i.e. PTM)
behaves as a purely elastic porous body (see Section 4
and Appendix). It is further assumed that the presence of
the porous cylindrical body within the PTM provides a
negligible effect on its state-of-stress as a result of the
applied axial load. This is equivalent to imagining the por-
ous cylindrical body embedded in an infinitely extended
PTM with a far-field applied stress r1zz at its boundary.
The PTM itself is assumed to be under the condition of a
uniaxial load with a lateral confinement (i.e. pressing in a
rigid die). Therefore, the sample can be considered under
conditions of biaxial loading (Fig. 2).

For the PTM, the axial and radial stresses are related to
the axial strain ezz by the Hooke’s law and are given by (see
Eq. (A1) in Appendix):

rzz ¼
1� m

ð1þ mÞð1� 2mÞ

� �
Eezz ð17Þ

rrr ¼
m

ð1þ mÞð1� 2mÞ

� �
Eezz ð18Þ

where m and E are the Poisson’s ratio and Young’s modulus
for the PTM, respectively. These depend upon the PTM
porosity hp and are given by (see Section 4 and Appendix):

m ¼ 2� 3hp

4� 3hp

ð19Þ

EðC; hpÞ ¼ 384:55ðC þ 1Þ�0:22475ð0:0188ð1� hpÞ � 0:8764Þ
ð20Þ

where C is the concentration of graphite in the PTM. The ra-
tio of the axial stress to the radial stress is therefore given by:

rzz

rrr
¼ 1� m

v
¼ 2

2� 3hp

¼ k ð21Þ

The ratio of the radial stress to the axial stress is also
obtained from Eqs. (11) and (12) And it is given by:

rrr

rzz
¼

err
ezz


 �
� 1

3
1� 3 w

u


 �h i
1þ 2 err

ezz


 �h i
1� 1

3
1� 3 w

u


 �h i
1þ 2 err

ezz


 �h i ð22Þ
By substituting Eq. (15) into Eqs. (21) and (22), the fol-
lowing expression for the axial/radial strain rate ratio is
obtained:

_err

_ezz
¼ h� hp

2hp þ ð1� 3hpÞh
ð23Þ

It is methodologically useful to compare Eq. (23) with
the following expressions for axial/radial strain rate ratio
in conventional densification processes [28]:

_err

_ezz
¼

1� 3 w
u


 �
1þ 6 w

u


 � ¼ � 2� 3h
4� 3h

� �
for free up-setting ðpressing

without lateral confinement; rrr ¼ 0Þ ð24Þ
_err

_ezz
¼ 0 for pressing in a rigid die ðpressing with lateral

confinement; _err ¼ 0Þ ð25Þ
_err

_ezz
¼ 1 for isostatic pressing ð_err ¼ _ezz ) _e ¼ 3_ezz; _c ¼ 0Þ

ð26Þ

If k ¼ 2
2�3h (which means that h = hp), then _err ¼ 0, and one

has conditions of pressing in a rigid die. If k = 1 (i.e. if
hp = 0, which means that PTM is an incompressible mate-
rial), _err ¼ _ezz, and the conditions of isostatic pressing are
achieved.

If k!1 (i.e. if hp = 2/3), which approximately corre-
sponds to the density of packed isomeric spherical parti-
cles, then _err ¼ 3h�2

4�3h
_ezz, and one has the conditions of free

up-setting (see Eq. (24)).
In Fig. 3, the curves corresponding to the relationships

between the radial/axial strain rate ratio and sample’s
porosity (in accordance with Eq. (23)) for various PTM
porosities are shown. For comparison, the curves corre-
sponding to the conditions of free up-setting (Eq. (24)),

pressing in a rigid die _err
_ezz
¼ 0


 �
and isostatic pressing

_err
_ezz
¼ 1


 �
are also shown.

The data in Fig. 3 indicate that, for high PTM porosi-
ties, the porous material deformation mode under QIP
can be closer to the conditions of free-upsetting rather than
to the isostatic pressing ones.

Mostly, the radial/axial strain rate ratio, for hp > 0.5, is
in between the curves corresponding to pressing in a rigid
die and free up-setting. This fact testifies the intensive
shape change under QIP which is the distinctive feature
of this process in comparison with the conventional con-
tainerless isostatic pressing.

For QIP, the equivalent strain rate is given by:

W ¼
ffiffiffi
6
p ð1� hpÞð1� hÞ

3
2

2hp þ ð1� 3hpÞh

" #
hp

1� hp

� �2

þ h
1� h

" #1
2

_ezzj j

ð27Þ
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Fig. 3. Radial–axial strain rate ratio vs. porosity for different processes of treatment by pressure.
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The axial stress is therefore given by:

rzz ¼ �A
2mþ1

31�m

� �1
2 1� hp

� m�1ð1� hÞ
3
2ðmþ1Þ

2hp þ hð1� 3hpÞ
� �m

" #

� hp

1� hp

� �2

þ h
1þ h

" #m�1
2

_ezzj jm ð28Þ

The axial strain rate is obtained by rearranging Eq. (28):

_ezzj j ¼
31�m

2mþ1

� � 1
2m 2hp þ hð1� 3hpÞ
ð1� hpÞ

m�1
m ð1� hÞ

3ðmþ1Þ
2m

2
4

3
5

� hp

1� hp

� �2

þ h
1� h

" #1�m
2m

rzzj j
A

� �1
m

ð29Þ

Combining Eqs. (7) and (29) gives the following expres-
sions for the rate-of-change of porosity:

_h ¼ � 3

2

� �mþ1
2m 1� hp

ð1� hÞ
mþ3

2

" #1
m

hp

1� hp

� �2

þ h
1� h

" #1�m
2m

h
rzzj j
A

� �1
m

ð30Þ
Combining Eqs. (7), (9) and (23) gives the following

expression for the axial strain rate in terms of the rate-of-
change of porosity:

_ezz ¼
_H

H
¼ 1

3

2hp þ hð1� 3hpÞ
ð1� hpÞð1� hÞ

� � _h
h

ð31Þ
Combining Eqs. (9), (23) and (31) gives the following
expression for the radial strain rate in terms of the rate-
of-change of porosity:

_err ¼
_R
R
¼ 1

3

h� hp

ð1� hpÞð1� hÞ

� � _h
h

ð32Þ

The shape change rate from Eq. (8) can be represented
as follows:

_c ¼ 2
ffiffiffi
6
p ð1� hÞð1� kÞ

2ð2� 3hÞ � kð4� 3hÞ

����
���� _ezzj j ð33Þ

or taking into account Eq. (29):

_c
ffiffiffiffiffiffiffiffi
2=3

p
rz0j j=Að Þ

1
m

h i
¼ 18hp

3hp� 2

h

4 1� hð Þ h� hp

3hp�2


 �
2
4

3
5

1
m,

� 2� 3hp

6
ffiffiffi
6
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2
p 1� hð Þ þ h 1� hp

� 2
q

2
64

3
75

m�1
m

ð34Þ

The normalized shape change rate _c
ffiffiffiffiffiffiffiffi
2=3

p
rz0j j=Að Þ

1
m

h i.
is

shown in Fig. 4 as a function of the specimen’s porosity
h for different m and hp.

Subtracting Eq. (32) from (31) and integrating gives the
following expression for the aspect ratio H/R:
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Fig. 4. Dimensionless normalized shape change rate vs. porosity for QIP.
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_H
H
�

_R
R
¼ hp

1� hp

� � _h
h
)
Z H

R

H0
R0

d ln
H
R

� �� �

¼ hp

1� hp

� �Z h

h0

dðln hÞ ) H
R
¼ H 0

R0

h
h0

� � hp
1�hp

ð35Þ

In deriving Eq. (35), it was assumed that hp is a constant
(see Appendix). Eq. (35) indicates that the change in the as-
pect ratio H/R does not depend upon the constitutive
behavior of either the PTM or densifying body, but de-
pends only on the PTM’s porosity and the body’s initial
density and dimensional parameters.

Eq. (35) can be compared with analogous expressions
for conventional densification processes [28]:

H
R
¼ H 0

R0

h
h0

� �2

for free up-setting ðpressing without

lateral confinement; rrr ¼ 0Þ ð36Þ
H
R
¼ H 0

R0

1� h0

1� h

� �
for pressing in a rigid die ðpressing

with lateral confinement; _err ¼ 0Þ ð37Þ
H
R
¼ H 0

R0

for isostatic pressing ð_err ¼ _ezz ) _e ¼ 3_ezz; _c ¼ 0Þ

ð38Þ
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When hp = 2/3, we obtain Eq. (36) derived for the condi-
tions of free up-setting. If hp = 0, we have the conditions
of isostatic pressing (Eq. (38)) when H/R = const. If
hp = h in the vicinity of h = h0, we obtain Eq. (37), corre-
sponding to the aspect ratio evolution in the conditions
of pressing in a rigid die, as the first term of expansion of
expression (35).

The results of the calculations in accordance with Eqs.
(35)–(38) are shown in Fig. 5.

Change of the aspect ratio expressed by the relationship
H
R =

H0

R0
is represented as a function of the sample’s porosity.

The initial porosity of the sample is assumed to be h0 = 0.3.
The calculation results indicate that, for sufficiently

dense PTM, having porosity hp < 0.2, the deformation
state under QIP is close to the isostatic one. However,
for most cases, in the capacity of PTM, industrial sand
(alumina) mixed with graphite powder in a loose state is
used.

For this PTM kind, hp > 0.2. This means that the aspect
ratio evolution under QIP can be close to that one obtained
under the conditions of pressing in a rigid die or free up-
setting.

4. Constitutive behavior of PTM

In order to understand the shrinkage and shape distor-
tion of porous bodies densified in a granular PTM, it is
important to understand the mechanical behavior of the
PTM itself under compression load. The major question
to be answered is the verification of the assumption made
in Section 3. The model introduced in Section 3 assumed
an elastic behavior of the PTM during compression. If
this hypothesis is valid, then the dependence of the
Young’s modulus of the PTM with respect to the PTM
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Fig. 6. Normalized Young’s modulus vs. PTM relative density (the
composition and the PTM porosity should obey certain
rules. A series of experiments have been conducted to
understand the evolution of the PTM Young’s modulus
during densification.

4.1. Experiments on PTM pressing in a rigid die

In our study, a mixture of 99% pure fused irregular
shaped alumina (Al2O3) with typical size of 200 lm and
99% pure spherical shaped graphite (C) with typical size
of 150 lm with different mass percentage was used as
PTM. The alumina and graphite were mixed in a V-shape
plastic container fixed in a rotary mixing machine for at
least 8 h. The mixed PTMs were stored in sealed plastic
containers for further use.

The PTM powders were placed in a rigid die with pol-
ished walls and with the inner diameter of 0.5 in. The
PTM was pressed at a maximum load of 1.5 tons in an
INSTRON� machine, which recorded the load and the
displacement. Thereby the stress–strain dependence during
PTM compression has been determined for the composi-
tion range from 0% graphite and 100% alumina to 100%
graphite and 0% alumina with an increasing (decreasing)
step of 20% of each of the components. Based on these
experimental data, one can obtain the evolution of the
Young’s modulus of the PTM powders during compres-
sion. At the same time, the relative density of the PTM
powders during compression can be determined based on
mass conservation. Fig. 6 shows a set of the normalized
Young’s modulus vs. relative density dependences for all
the tested PTM compositions. (The Young’s modulus for
all the PTM compositions was normalized by the Young’s
modulus Er (the reference Young’s modulus) of the compo-
sition containing 50% Al2O3 and 50% C.)
 +50% Al2O3)
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reference modulus is obtained for a fixed PTM composition).



Fig. 7. SEM micrograph of the loose PTM powder: (a) 50% alumina and
50% graphite; (b) cracks on surfaces of graphite particles; (c) graphite
particles after compression.
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The first set of tests indicated that there is a substantial
change in the densification behavior when the composition
of alumina is greater than 80%. Therefore, the additional
tests with graphite composition of 25%, 15%, 10%, 7.5%,
5% and 2.5% were conducted.

The qualitative analysis of the PTM particles’ response to
the applied pressing load was carried out by scanning elec-
tron microscopy (SEM). The results of the scanning electron
microscopy analysis of the loose PTM powder are shown in
Fig. 7. It is evident (Fig. 7a and b) that graphite particles
experience extensive damage at the first several cycles of
the PTM usage (when ‘‘fresh’’ PTM is employed). Alumina
particles, on the contrary, do not indicate any substantial
evidence of cracking (Fig. 7a and c). In order to assess the
degree of the deformation of the PTM during quasi-isostatic
pressing, the recycled PTM alumina powder has been
pressed with a polymeric binder (polychlorvinile) in a rigid
die under 100 MPa pressure. The pressed specimens were
removed from the die and polished using standard metallo-
graphic techniques. Examination of both the loose PTM
powder and the pressed specimens was conducted using a
Cambridge Stereoscan 360 SEM. The results of the SEM
analysis of the pressed specimen are shown in Fig. 8.

No particle distortions or areas of a remarkable plastic
flow are observed in Fig. 8. The results shown in Figs. 7c
and 8 confirm an accepted hypothesis of a pure elastic
deformation of the recycled PTM powder. The applicabil-
ity of an elastic model for the description of the ‘‘fresh’’
PTM constitutive behavior is studied by the following
quantitative analysis of the obtained experimental data
on the PTM pressing in a rigid die.

4.2. Analysis of the experimental data

Fig. 5 indicates that the PTM’s normalized Young’s
modulus (obtained as a slope on the corresponding
stress–strain diagrams assuming the boundary conditions
of the deformation in a rigid die), does not experience a
substantial change when the relative density is greater than
60%. Therefore, it is appropriate to make an assumption
that the PTM Young’s modulus E(C,qP), which, in general,
is a function of the PTM composition C and the PTM rel-
ative density qP, can be represented as a product of two
functions Ec(C) and EqP

ðqÞ, where Ec(C) is a function of
the PTM composition C only and EqP

ðqÞ is a function of
the PTM relative density q only. (Indeed, this functional
form justifies the independence of the concentration-
normalized PTM Young’s modulus of the PTM relative
density.)

According to our assumption, we have:

EðC; qÞ ¼ EC � EqP
ð39Þ

Since Ec does not depend on the PTM relative density, we
can use the effective Young’s modulus for a fully dense
PTM material for the purpose of finding a general expres-
sion of EqP

as a function of the relative density qP. From
Eq. (39) we have:
EqP
¼ EðC; qPÞ=EC ðFully DenseÞ ð40Þ

Here EC (Fully Dense) is determined as a linear combina-
tion of the corresponding elastic moduli for alumina and
graphite.



Fig. 8. SEM micrograph of the recycled alumina PTM powder pressed under 100 MPa with a polymeric binder in a rigid die.
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Fig. 9 shows the experimental results for EqP
for different

PTM compositions. From this figure one can see that the
obtained curves are very close to each other. This, in turn,
indicates that EqP

does not depend considerably on the
PTM composition. This fact agrees with the above-
mentioned assumption.

By taking a linear approximation of the average of all
the curves in Fig. 9, a general expression for Eq can be
determined:
Fig. 9. Normalized Young’s modulus vs. PTM relative density
EqP
¼ 0:0188 � qP � 0:8764 ð41Þ

Following a similar process, from Eq. (39) we have:

EC ¼ E C; qPð Þ=EqP
ð42Þ

From Fig. 6, it follows that Ec/Er does not change sub-
stantially for relative densities greater than 60%. This
allows an approximation (as shown in Fig. 10) for Ec as:

Ec ¼ 384:55 � ðC þ 1Þ�0:22475 ð43Þ
(the reference modulus is obtained for a fully dense PTM).



Fig. 10. Approximation of the concentration dependence of the PTM Young’s modulus.
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Combining Eqs. (41) and (43), we obtain the general
expression for the PTM Young’s modulus as a function
of the PTM composition and the PTM relative density
(used earlier as Eq. (20)):

EðC;qÞ ¼ 384:55 � ðCþ 1Þ�0:22475ð0:0188 �qp� 0:8764Þ ð44Þ

where C is the mass percentage of graphite in PTM and qp

is the PTM relative density during the compression process.
5. Optimization of PTM composition

Having determined the functional form of the elastic
modulus, one can consider the influence of the PTM com-
position on the distortion of a porous body subjected to
QIP. The elastic behavior of the PTM is determined by
Hook’s law. Therefore, the axial stress in the PTM can
be represented as:

rzp ¼
E

1þ m
ezz þ

m
1� 2m

ðezz þ 2errÞ
h i

ð45Þ

where E and m are the PTM’s Young’s modulus and Pois-
son’s ratio, respectively; ezz and err are the PTM axial
and radial deformations, respectively. For a rigid die,
err = 0, therefore:

rzp ¼
Eð1� mÞ

ð1� 2mÞð1þ mÞ ezz ð46Þ

The Poisson’s ratio for a compressible PTM is accepted
as [29]:

m ¼ 2� 3hp

4� 3hp

ð47Þ

where hP = 1 � qP is the relative porosity of the PTMs.
From Eqs. (6) and (9), Eq. (8) can be written as:
rzp ¼ 384:55ðC þ 1Þ�0:22475ð0:0188ð1� hPÞ � 0:8764Þ

� 1

9

ð4� 3hPÞ
hpð1� #PÞ

ezz ð48Þ

In Section 3, for the engineering assessment of the shape
change during QIP (see Eq. (35)), the constancy of the
PTM porosity hP has been assumed. Here, for the rigorous
optimization analysis, we consider a more general case of
evolving hP. Both solutions (with constant and changeable
PTM porosity) are compared with the experimental data
on cold and hot QIPing of cylindrical specimens in Section 7.

Substituting the expression for the axial strain (based on
mass conservation),

ezz ¼ ln
1� hp0

1� hp

ð49Þ

where hp0 is the initial PTM porosity, we obtain:

rzp ¼ 384:55 � C þ 1ð Þ�0:22475 0:0188 � 1� hPð Þ � 0:8764ð Þ

� 1

9

ð4� 3hPÞ
hp 1� #Pð Þ ln

1� hp0

1� hp

ð50Þ

Based on the analysis of the evolution of the PTM
porosity (see Eq. (A4) in Appendix):

rzz ¼ �
2

3
A _ej jm 2� 3hp

2� hp

ð1� hÞ3

h

�

ffiffiffi
6
p
ð1� hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

pð1� hÞ þ hð1� hpÞ2
q
ð4� 3hpÞh

2
4

3
5

m�1

ð51Þ

where parameters A and m are material constants. From our
former study [30] on the testing by indentation of combustion
synthesized cermet specimens, the values of A = 180 MPa0.2

and m = 0.2 were used in this work (these values were ob-
tained for a TiC–NiTi cermet composite with the 30 vol.%
NiTi). Equilibrium in the system PTM–specimen requires:
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rzp ¼ rzz ð52Þ
For the purpose of the generalization of the optimiza-

tion results, a normalized time of s ¼ A
E0


 �1
m
t is introduced,

where E0 is the effective Young’s modulus for a fully dense
PTM material and t is the physical time of the process.
Therefore, from Eqs. (12)–(14), we obtain:

dh
ds
¼�ð1� hÞ 576:83

E0

ðCþ 1Þð�0:22475Þð0:0188ð1� hPÞ � 0:8764Þ
� �1

m

� 4� 3hPð Þ
9hPð1� hPÞ

ln
1� hP

1� hP0

� �
2� hPð Þ
ð2� 3hPÞ

h

ð1� hÞ3

" #1
m

�

ffiffiffi
6
p
ð1� hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

pð1� hÞ þ hð1� hPÞ2
q

hð4� 3hPÞ

2
4

3
5

1�m
m

ð53Þ

Here h is the specimen’s porosity.
_hP ¼
qSpe 2R _RHð1� hÞ þ R2 _Hð1� hÞ � R2H _h

h i
� qPTM R02

d
_#þ 2R _RH þ R2 _H


 �
ð1� hPÞ

n o
qPTM R02

d H 0
d � _#t

� 
� R2H

h i ð58Þ
Based on Eqs. (8), (10) and (23), the following kinetic
differential equations are valid for the normalized dimen-
sions H/H0 and R/R0, where H and H0 are the current
and the original heights of the specimen, respectively, and
dðhP=hP0
Þ

ds
¼

qSpe

qPTM
2 R

R0

H
H0

dðR=R0Þ
ds ð1�hÞþ R

R0


 �2
dðH=H0Þ

ds ð1�hÞ� R
R0


 �2
H
H0

dh
ds

� �
� R0

d

R0


 �2
_#

H0

A
E0


 �1
mþ2 R

R0

H
H0

d R=R0ð Þ
ds þ R

R0


 �2
d H=H0ð Þ

ds

� �
ð1�hPÞ

� 	
R0

d

R0


 �2 H0
d
� _# A=E0ð Þ

1
ms

H0

� �
� R

R0


 �2
H
H0

� � ð59Þ
R and R0 are the current and the initial radii of the speci-
men, respectively:
dðH=H 0Þ
ds

¼ H
3H 0

2hP þ ð1� 3hPÞh
hð1� hÞð1� hPÞ

� �
dh
ds

ð54Þ

dðR=R0Þ
ds

¼ R
3R0

h� hP

hð1� hÞð1� hPÞ

� �
dh
ds

ð55Þ

Based on the mass conservation of the whole system,
including both a PTM and a porous cylindrical specimen,
the following is correct:

dM
dt
¼ qSpe

dV Spe

dt
þ qPTM

dV PTM

dt
¼ 0 ð56Þ

where qSpe is the density of the fully dense specimen, VSpe is
the skeleton volume (substance volume excluding the vol-
ume of pores) of the specimen, qPTM is the density of the
fully dense PTM and VPTM is the skeleton volume of the
PTM.

The following geometric relationships are valid:
V Spe ¼ pR2Hð1� hÞ

V PTM ¼ pðR02

d H d � R2HÞð1� hPÞ
ð57Þ
where R0
d is the radius of the rigid die used to contain the

whole composite cell (composite cell includes both PTM
and densified specimen) and Hd is the current height of
the whole composite cell, which is equal to H 0

d � _#tðH 0
d is

the initial height of the composite cell and _# is the speed
of punch).

Substituting Eq. (57) into (56) and simplifying the
results, we have:
Applying the same normalization procedures as used
before in Eq. (53) for the time t, the specimen height H,
the specimen radius R and the PTM porosity hP, Eq. (58)
can be rewritten as:
Eqs. (53)–(55) and (59) represent a set of four first-order
differential equations with respect to the four unknown
functions of the specific time s: specimen’s porosity h, spec-
imen’s height H, specimen’s radius R and the PTM poros-
ity hP. Fig. 11 shows the solution of the above-mentioned
set of equations (using the fourth-order Runge–Kutta algo-
rithm). This solution has been obtained for the PTM with
alumina concentration of 50%. Similar solutions were
obtained for various compositions of the PTM. All of them
indicate almost no porosity and distortion level change for
the time range exceeding 12 s. The shrinkage and distortion
rates for this time point are comparatively assessed in
Fig. 12. This figure shows the rate of the distortion

dððH=H0Þ=ðR=R0ÞÞ
dt


 �
and the densification (dh/dt) rate for differ-

ent PTM compositions. From this figure one can see that at
the composition of 75% Al2O3 and 25% C the curve of den-
sification rate crosses the curve of the distortion rate. This
point corresponds to the highest densification rate while



Fig. 11. Kinetics of shrinkage and distortion.

Fig. 12. Comparative analysis of densification and distortion rates.
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the distortion rate is at its lowest possible level. Therefore,
for the chosen values of the specimen’s constitutive param-
eters (constants A and m), the PTM composition contain-
ing 75% of alumina and 25% of graphite should be optimal.

6. QIP experiments

6.1. Cold QIP experiments

For the analysis of the aspect ratio evolution and the
verification of the modeling results obtained in previous
sections, quasi-isostatic pressing of Ni and Ti powder sam-
ples was carried out in a rigid cylindrical die at room tem-
perature. A graphite powder transmitting medium was
used in the experiments. The velocity of pressing was
approximately 0.001 m/s. The die dimensions were 0.06 m
diameter and 0.1 m height.

The die was designed to withstand 200 MPa of inter-
nal pressures. A smaller, thinner can (approximately
1 mm) was encased in a structural thick wall cylinder.
The piston maintained pressure with a hardened steel
seal plate.



Table 1
Comparison of the theoretical and experimental results on QIPing of Ni and Ti porous samples

Initial
height
(m)

Initial
diameter
(m)

Final
height
(m)

Final
diameter
(m)

Initial
porosity

Final
porosity

Change of aspect ratio
(experimental)

Change of aspect ratio
(theoretical)

Relative
error

Nickel 0.030 0.032 0.026 0.032 0.47 0.388 0.871 0.881 0.011
Nickel 0.012 0.032 0.01 0.032 0.48 0.346 0.814 0.804 0.013
Nickel 0.016 0.032 0.011 0.032 0.51 0.278 0.713 0.667 0.065
Titanium 0.025 0.032 0.022 0.032 0.52 0.461 0.889 0.923 0.039
Titanium 0.038 0.032 0.031 0.032 0.5 0.374 0.813 0.823 0.012
Titanium 0.025 0.032 0.021 0.032 0.45 0.344 0.841 0.836 0.005
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Nickel and titanium specimens were produced by the
preliminary cold pressing of loose powders. The cold press-
ing was performed to produce three nickel and three tita-
nium samples, the heights and diameters of which are
given in Table 1.

Each cold pressed sample was heated in a furnace to
lower its yield stress and to improve the integrity of the
samples by providing some degree of sintering; the nickel
samples were heated to 615 �C and the titanium samples
to 350 �C. Without pre-sintering of the samples, they could
potentially have been crushed during the QIP process.
Upon removal from the furnace each sample was immedi-
ately placed in a thin-walled can (6 in diameter) and sur-
rounded by the PTM. The can was introduced inside a
thick-walled pressure cylinder and the piston with the plun-
ger assembly was placed on the top of the PTM. The sam-
ples were then pressed to a variety of forces, ranging from
2.5 to 10 kN.

The diameter, the height and the porosity of all the sam-
ples were measured before and after QIP. The porosity
measurements were performed by the method of optical
metallography. The results of experiments are represented
in Table 1.

6.2. Hot QIP experiments

The hot QIP was conducted at the post-combustion
(SHS) densification stage employed for the synthesis of
TiC–TiNi cermet composites (for more details, see our
previous publications [13,15]). The first step was baking
of the elemental titanium, nickel and graphite powders
(with 30 vol.% of TiNi – 0.76 mol fraction of TiC).
The elemental powders were baked under a temperature
of 110 �C and under a less than 25 mm Hg pressure in a
vacuumed oven for at least 24 h. The baked powders
were loaded under argon protection into polyethylene
Table 2
Comparison of the theoretical and experimental results on QIPing of TiC–TiN

TiC–
30 vol.%TiNi

Initial
height
(m)

Initial
diameter
(m)

Final
height
(m)

Final
diameter
(m)

Initial
porosity

F
p

1 0.0320 0.0320 0.0150 0.0388 0.335 0
2 0.0150 0.0320 0.0072 0.0380 0.350 0
jars and dry mixed with corundum grinding balls
(96.3% Al2O3 and 2.75% SiO2) in a grinding ball/powder
mass ratio of 4:1. Thereafter, the polyethylene jars were
fixed onto a rotary blender machine and dry mixed for
at least 24 h. After mixing, the mixture was put back
into the vacuum oven and again baked for at least
another 24 h under 110 �C and less than 25 mm Hg
pressure to remove the moisture absorbed in the mixture.
After baking, mixtures of the powders were uniaxially
pressed into cylindrical specimens with dimension of
approximately either diameter 1.25 in. and height 0.6 in.
(weight approximately 25 g) or diameter 1.25 in. and
height 1.25 in. (weight approximately 50 g) under a
compressing load of 2 tons in a rigid die. Right after
the green sample was ready it was loaded into the center
of a pool of PTM (of the optimal composition
determined in Section 5 – 75% Al2O3 and 25% C) in a
6-inch-diameter die. Thereafter, it was ignited and
sequentially consolidated using PHI and ENERPAC
presses.

To aid the initiation of the combustion and thereafter a
planar combustion wave from the top of the specimen,
samples were placed beneath a layer of loose stoichiometric
titanium–graphite mixture. An electrochemical system con-
sisting of a resistant Ni–Cr heating wire was wrapped
around a wooden matchstick and buried in the loose pow-
der. A remote variable transformer was connected to the
resistant heating wire and the combustion was initiated
by passing an electrical current through the resistant heat-
ing wire and consecutive ignition of the matchstick. Fol-
lowing the combustion synthesis, after a time delay of
15 s, a load of 10 kN have been applied for 20 s. Fig. 14
compares the microstructure of the as-reacted material
(Fig. 14a) to the same material loaded to 10 kN after a
delay time of 15 s (Fig. 14b). The final porosity is in the
range of 1–3%.
i powder cermet composites

inal
orosity

Change of aspect ratio
(experimental)

Change of aspect ratio
(theoretical)

Relative
error

.032 0.385 0.365 0.054

.033 0.401 0.363 0.095



Fig. 13. Relative change of the PTM porosity
hp0�hp

hp0
vs. sample porosity for different sample skeleton strain rate sensitivities (m) and process rates ( _e).
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The diameter, the height and the porosity of
all the samples were measured before and after
combustion following QIP. The porosity measurements
were performed using the Archimedes technique [1].
The results of experiments are represented in
Table 2.
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7. Comparison of modeling and experimental data

Based on the experimental data on initial parameters
(aspect ratio and porosity) for QIP of Ni and Ti powder
samples, the calculations were performed in conformity
to Eq. (35). The final aspect ratio was determined with
the knowledge of the sample final porosity. PTM (graphite
powder) porosity was determined experimentally (using
mass conservation-based calculations): hp = 0.4. This value
was used in the analysis.

The experimental and theoretical data are given in Table
1. One can see that the experimental and calculated results
agree well: for all the cases, the relative error in the values
of the final aspect ratio is less than 6.5%. Thus, Eq. (35) can
be recommended for use as a practical tool for the quanti-
tative prediction of the shape change during (cold) QIP.

It should be noted that Eq. (35) is not valid for a fast
pressing accompanied by high-strain-rate modes (faster
than 1 s�1; see Fig. 13). In this case, Eq. (35) in its differen-
tial form should be solved with regard to Eq. (A6) (see
Appendix).
Fig. 14. Microstructures of (a) the as-reacted and (b) the densified
(subjected to QIP) TiC–TiNi cermet.
The comparison of the experimental data on the shape
evolution during hot QIPing of combustion-synthesized
TiC–TiNi cermet composites with model predictions pro-
vided by the solution of Eqs. ((53)–(55) and (59)) is given
in Table 2 for both size sets of specimens mentioned in Sec-
tion 6. The initial PTM porosity assumed was hP = 50%.
One can see that the relative error in the values of the final
aspect ratio is smaller than 10% (see Table 2).

8. Conclusions

The principal results obtained in the investigation can be
summarized as follows:

1. A mathematical model of the quasi-isostatic pressing
(QIP) is developed.

2. The model predicts an essential shape change under QIP
for large porosities of the pressure-transmitting medium
(PTM).

3. It is shown that, for most cases, the QIP deformation
mode has an intermediate position between the defor-
mation modes of pressing in rigid dies and free up-
setting.

4. The ratio between the sample and the PTM porosities
influences the evolution of the integral aspect ratio.

5. The assumption of the elastic character of the PTM con-
stitutive behavior is analyzed. The dependence of the
PTM elastic modulus on the PTM composition and
the PTM relative density is determined.

6. An algorithm for the determination of the optimal PTM
composition is developed. The algorithm is aimed at
finding the PTM composition that enables the highest
densification of the porous specimen with the minimum
possible distortion. It is shown that, for TiC–TiNi cer-
met composites, the optimal PTM composition corre-
sponds to 75 mass% alumina and 25% graphite.

7. A comparison of the experimental and calculation
results on cold QIPing of Ni and Ti powders and hot
QIPing of TiC–TiNi cermet composites demonstrates
good quantitative correspondence.
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Appendix. Evolution of PTM porosity during QIP

In the following, E and m are the PTM Young’s modulus
and Poisson’s ratio, respectively; ezz and err are the PTM
axial and radial deformations, respectively.

The following expressions for E and m are valid (by anal-
ogy ‘‘linear viscosity = elasticity’’: g0 $ E0

2ð1þm0Þ
for fully

dense material, g0u$ E
2ð1þmÞ for effective porous material;

m0 ¼ 1
2

for an incompressible skeleton):
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E ¼ 4E0

ð1� hpÞ2

4� 3hp

; m ¼ 2� 3hp

4� 3hp

ðA1Þ

Then, Eq. (46) can be rewritten as:

rzp ¼
4

9
E0

ð1� hpÞ2

hp

ezz ðA2Þ

Expression (A2) reflects the fact that an infinite stress is
necessary for bringing a body into the poreless (fully dense)
state.

Substituting Eq. (49) for the axial strain (based on mass
conservation), we obtain:

rzp ¼
4

9
E0

ð1� hpÞ2

hp

ln
1� hp0

1� hp

ðA3Þ

At the same time, for the sample, Eqs. (7) and (28) are
valid. Upon their basis, we have the relationship for the
axial stress in the sample:

rzz ¼ �
2

3
A _ej jn 2� 3hp

2� hp

� ð1� hÞ3

h

ffiffiffi
6
p
ð1� hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

pð1� hÞ þ hð1� hpÞ2
q
ð4� 3hpÞh

2
4

3
5

n�1

ðA4Þ
Equilibrium in the system PTM–sample requires:

rzp ¼ rzz ðA5Þ
Thus, from Eqs. (A3)–(A5) we obtain:

A _ej jn

E0

¼ 2ð1� hpÞ2ð2� hpÞh
3ð2� 3hpÞð1� hÞ3hp

� ln
1� hp

1� hp0

ffiffiffi
6
p
ð1� hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

pð1� hÞ þ hð1� hpÞ2
q
ð4� 3hpÞh

2
4

3
5

n�1

ðA6Þ
The latter expression enables the analysis of the relative
change of the PTM porosity

hp0�hp

hp0
corresponding to definite

values of the sample porosity, the strain rate sensitivity m

and the volume change rate _e. Note that, for most
materials, A

E0
� 10�3 . . . 10�2 sm for the range of tempera-

tures corresponding to hot deformation (A depends on
the temperature) [27,31]

The results of the calculations in accordance with (A6)
are represented in Fig. 13. Here, the initial PTM porosity
hp0 is assumed to be 0.65, and A

E0
is taken 10�2 sm.

The calculation data indicate that, for higher strain
rates, influence of the sample material strain rate sensitivity
m on the change of the PTM porosity increases. For higher
strain rates, the larger change of the PTM porosity occurs
when the sample properties are close to the linear-viscous
ones (m! 1). For smaller strain rates (slower pressing),
the higher change of the PTM porosity corresponds to
the ideal-plastic properties of the sample (m = 0).

The smaller the sample porosity, the higher the relative
change of the PTM porosity.

For usual uniaxial pressing, strain rates vary in the
range 10�3 . . . 10�2 s�1. As it follows from Fig. 13, for such
a level of _e, the relative change of the PTM porosity is
always less than �6%. Therefore, for slow QIP processing,
one can assume that the PTM porosity is unchangeable.
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